kelper/addis_care_real_data_analysis.py
# Group by ZIP and count providers
zip_analysis = df.groupby('zip').agg({
'provider_type': 'count', # Total providers per ZIP
'state': 'first' # State for each ZIP
}).reset_index()
# Separate ALF and HCBS counts by ZIP
alf_by_zip = alf_providers.groupby('zip').agg({
'provider_type': 'count' # ALF count per ZIP
}).reset_index()
hcbs_by_zip = hcbs_providers.groupby('zip').agg({
'provider_type': 'count' # HCBS count per ZIP
}).reset_index()
# Calculate what percentage of providers are ALF vs HCBS
zip_analysis['alf_percentage'] = zip_analysis['alf_count'] / zip_analysis['total_providers'] * 100
zip_analysis['hcbs_percentage'] = zip_analysis['hcbs_count'] / zip_analysis['total_providers'] * 100
Since we don't have real Medicaid data, I used provider characteristics that correlate with Medicaid dependency: